Microwave-induced acoustic imaging of biological tissues

نویسندگان

  • Lihong V. Wang
  • Xuemei Zhao
  • Haitao Sun
  • Geng Ku
چکیده

We present tomographic imaging of biological tissues by use of microwave-induced acoustic signal. It was demonstrated that the acoustic signal was proportional to the intensity of the incident microwave and was related to the absorption property of microwave in the medium. Pulsed microwave radiation was used to illuminate the samples. Absorbed microwave energy caused thermoelastic expansion that radiated acoustic waves. A focused ultrasonic transducer detected the time-resolved acoustic signals. Each acoustic signal was converted into a one-dimensional image. A linear scanning of the ultrasonic transducer yielded multiple one-dimensional images, which formed a two-dimensional image. The imaging contrast is based on the difference in the dielectric constants among biological tissues. Because of the large contrast in microwave absorption among different tissue types, microwave-induced acoustic tomography could potentially provide a new modality for detecting early-stage cancers. © 1999 American Institute of Physics. @S0034-6748~99!04709-7#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrical circuit modeling and analysis of microwave acoustic interaction with biological tissues.

PURPOSE Numerical study of microwave imaging and microwave-induced thermoacoustic imaging utilizes finite difference time domain (FDTD) analysis for simulation of microwave and acoustic interaction with biological tissues, which is time consuming due to complex grid-segmentation and numerous calculations, not straightforward due to no analytical solution and physical explanation, and incompatib...

متن کامل

Microwave-induced Thermo-acoustic Tomo- Graphy System Using Trm-pstd Technique

Time reversal imaging method based on full wave numerical technique for likely breast tumors biological tissue in the Microwave-Induced Thermo-Acoustic Tomography (MITAT) system is discussed. In this paper, the mechanism of microwave-induced thermo-acoustic is strictly described based on thermodynamics and thermo-diffusion principles; the equivalent relationship between the absorbed microwave e...

متن کامل

Signal processing in scanning thermoacoustic tomography in biological tissues.

Microwave-induced thermoacoustic tomography was explored to image biological tissues. Short microwave pulses irradiated tissues to generate acoustic waves by thermoelastic expansion. The microwave-induced thermoacoustic waves were detected with a focused ultrasonic transducer to obtain two-dimensional tomographic images of biological tissues. The dependence of the axial and the lateral resoluti...

متن کامل

Simulation of Microwave Induced Thermo-acoustical Imaging Technique for Cancer Detection

Microwave-induced thermal acoustic imaging (MITAI) is a promising early breast cancer detection technique, in which image construction is based on thermo acoustics signals generated by the illumination of microwave pulses in tissue. In this work we have performed a microwave induced thermal acoustic signal generation simulation study using Comsol Multiphysics. A biological tissue model irradiat...

متن کامل

Microwave-induced thermoacoustic tomography using multi-sector scanning.

A study of microwave-induced thermoacoustic tomography of inhomogeneous tissues using multi-sector scanning is presented. A short-pulsed microwave beam is used to irradiate the tissue samples. The microwave absorption excites time-resolved acoustic waves by thermoelastic expansion. The amplitudes of the acoustic waves are strongly related to locally absorbed microwave-energy density. The acoust...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999